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Quantum mechanics with q-deformed commutators and 
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Institute of Physics, University of Tsukuba, Tsukuba, Ibaraki 305, Japan 

Received 13 April 1993, in h a l  form 29 July 1993 

Abstract. A qdeformed commutator for arbitrary q is derived from a variable with a 
periodic boundary condition such as an azimuthal angle (p (OsqKZn) .  A Hamiltonian 
can he written down in an Hermitian form for q=e' or q=eh with a a R ,  and its 
eigenfunctions and eigenvalues are obtained. Algebraic structures, W1+- and .!I&), of 
this model and introductions of gauge interactions are discussed. Extensions to man; 
variables and some elementary examples are presented. 

1. Introduction 

Models with quantum groups or q-deformed commutator are widely discussed in a 
variety of contexts, for instance, q-deformed oscillator systems [l-31 will bring us to 
q-deformed quantum field theory and quantum mechanics based on non-"mutative 
differential geometry [4-91 will shed light on the quantization of space-time. They 
are conceptually very interesting but are not yet realistic enough to observe the 
q-deformed effects in real physical processes. Recently we have presented quantum 
mechanics on a circle with a q-deformed commutation relation and pointed out some 
characteristic features which arise from the finiteness and the infinite degeneracy in 
the energy spectrum [lo]. In the model the deformation parameter q was taken as a 
kth primitive root of unity, i.e. q= exp( i /k)  with k=Z, 3, . . . . We can immediately 
see that the q-deformed commutator given by 

[e'',p$-'],= ih (1.1) 
is satisfied for arbitrary complex number q, where [A, B],=qAB - BA and 

with a,a/aq. Generally speaking, h in (1.1) and (1.2) may be replaced by arbitrary 
functions of q. We may also guess that the above model will be able to apply to 
motions for the azimuthal angle variable in two- or three-dimensional problems and 
some other physical processes with periodic boundary conditions. Furthermore, we 
may have a question whether this model can be extended to models with many 
periodic variables. We should also study more precisely the meaning of the character- 
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istic features pointed out in the previous work, that is, the finiteness and the infinite 
degeneracy of the energy levels. As was noted in [lo], these are closely related to the 
infinite dimensional symmetry, W,,, [ll], of the model. In this paper, we shall study 
these problems and give some answers. We also discuss q-deformed phenomena in 
some elementary processes. 

In section 2 the general framework and solutions are presented. An introduction 
of U(1) gauge interaction is performed in section 3. In section 4 some algebraic 
structures of this model are discussed and the relation of the infinite degeneracy in the 
energy spectrum with the symmetry of the model is clarified. In section 5 an extension 
to many variables are studied, and some elementary examples for azimuthal motions 
in two- and three-dimensional potential problems are investigated in section 6. Some 
remarks are presented in section 7. 

2. General formalism and solutions 

Following the work of [lo], we start with the following q-deformed commutation 
relation: 

where ph-) is defined by 

In (2.1) and (2.2), we may regard q as an angle variable ( O s r p < k ) .  The function 
h(q) can be chosen arbitrarily as far as it reduces to Planck's constant h in the limit 
4 4  1: 

lim 44) = h. 
Crl 

(2.3) 

The condition (2.3) guarantees that the system we are considering should turn back to 
ordinary quantum mechanics. By introducing complex variable z=e@ we easily see 
that 

Thus, the momentum operatorp$-)generates a finite displacement of the coordinate z 
on the complex plane. The cordinate displacement corresponds to the shift of the 
angle q+rp+a when q=eiO, and to the dilatation z+qz when q=e"for a a R .  The 
q-defonned commutation relation (2.1) reduces to the usual commutation relation as 

'This expression of a qdeformed momentum operator reminds us of that presented in 1121. Indeed, these 
two coincide aher some replacements, althougb the variable 5 in [IZ] corresponding to the variable Q in this 
article was not necessarily periodic. The effects of q-deformation arise from the introduction of internal 
coordinate e. 
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Cy1 [e”,p$-)],=ih(q) + [ z , p , ]  =ih with p z =  -iha,. 

(+) (-) 

Let us give a Hamiltonian as 

Hq=xPm Pm 
where 

When we rewrite the Hamiltonian explicitly as 

(2.7) 

it is easily seen that the Hamiltmian is Hermite if and only if q =ea or q = eia with 
a ER. In the limit q-, 1, the Hamiltonian coincides with the well b o w n  Hamiltonian 
for a rotator with the moment of inertia I =  1/2x as [lo] 

Eigenfunctions and eigenvalues of Hq are easily derived as follows: 

HqQm(9) =Em@m(~)) (2.9) 
where 

for 

(2.10) 

(2.11) 

with m E 2. In (2.9)-(2.11), the periodic boundary condition @,(9 + 2 z )  = Qm(9) is 
postulated. Explicitly we can rewrite E, as 

(2.12) 

where a is taken to be real. Note that the eigenvalues given in (2.10) coincide with 
those of the usual rotator as 

E , + Z m .  Plh2 2 

From (2.12), we obtain the relation 

E,SO 
and the symmetry under the replacement m+ -m, that is 

E,= E- ,  . 

(2.13) 

(2.14) 
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In addition to (2.14), when the deformation parameter q is a root of unity q= 
exp(2nilk) ( k = 2 , 3 , .  . .), the second equation in (2.12) indicates further symmetry 
which is called Z,-symmetry. Indeed all the states described by Qm+& with n 5 2 have 
the same energy E,. We will see in section 4 that the symmetry is related to the 
algebra of inbi te  dimension, WI+-. Owing to the symmetries, (2.14) and Z,, we 
obtain remarkable facts; the number of energy level is finite, Eo,  E,, . . . , Eh-],  and 
each energy level has an infinite degeneracy. Since we have already discussed some 
interesting phenomena in [lo], we do not repeat them here. 

T Kobayashi and T Suzuki 

3. Introduction of gauge interactions 

In this section, we investigate gauge interactions and give some possible ways of 
introductions of gauge interaction. We first consider a local U(1) gauge transforma- 
tion for the eigenfunctions given in (2.11), that is, @m(q)+&,(q)=To@m(q), where 

ra=exp (c; - -a (  .q) ) eU(1) 

and e is the electric charge of the rotator. As in the q= 1 case, HqQm(q) does not 
transform covariantly under the local U(1) gauge transformation, that is, 
~, ,Hq@,(q)#Hq6,(q) .  So we have to introduce gauge potential A, and claim that 

r.H;@,&) =qk" (3.1) 
Here H; is a Hamiltonian with a certain gauge potential and is transformed into Rq. 

Let us determine the form of H; , that is, how to introduce the gauge potential A,, 
into H q .  Unfortunately, it is difficult to solve for all r o E  U(1). Therefore, we restrict 
the gauge group U(1) to U ' ( l ) ,  where U'(1) is generated by 

r; = exp (i ;AV) 

with rZ a real constant. The first possibility for introducing the gauge interaction may 
be given by the following replacement in the Hamiltonian H,: 

Under these replacements, the requirement (3.1) holds; if the gauge potentials 
transform as 

In the limit q+l ,  both of A r )  reduce to A,+(d/dq)a,@), known as the gauge 
transformation of the second kind, for a&q) =AV. For simphcity, we choose the gauge 
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fields as AF)=TiA&*’ with real constants A$?. Of course, A$,*) may have q- 
dependence and we claim that lim,,AP)=Ao. Using the replacements given in (3.2), 
we have Hamiltonian with the gauge interaction. 

In the limit q+l ,  H; i s  reduced to that for a rotator in a constant magnetic field A. 
perpendicular to the rotator’s plane, that is 

wherep,= -iha/ap It is easily seen that eigenfunctions for H; are the same functions 
@,(q) given in (2.11) and eigenvalues for @,,,(q) are obtained as follows: 

for q =e” 

+ K  - A&+)A&-) forq=e” (3.5) iT 
with aeR\{O}. The magnetic field dissolves the degeneracy (2.14), i.e. Em# E t , .  This 
is just a q-deformed version of Zeeman’s effect. Indeed, with K =  U21 $ ( m  - x) eAo 2 

which are the energy eigenvalues for a rotator around a magnetic flux (1/2n)Ao. In 
contrast, the 2, symmetry in the case q=e”(vk’X’ still remains. 

We next consider another possibility for introduction of gauge interaction, which is 
performed by the following replacements: 

(3.7) 

In general, p$- )  does not satisfy the commutation relation (2.1) with eiq. The relation 
is, however, preserved for the choice Ag)=A&*)=constant. Moreover, in this choice, 
the transformation rules for Ab*) under Cr’(1) are easily solved and obtained as 

rA - 
A&*) -* Ah” = Ai*] + 1. (3.8) 

(3.9) 

And the Hamiltonian with the gauge interaction is given by 
2-q&3p+1d~).4&+6t’_ q-ia~-ldd).4&-l 
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The Hamiltonian also has the same eigenfunctions @,(v), and eigenvalues thereof are 
derived as follows: 

T Kobayashi and T Suzuki 

2- q-mt(d~kl16+)-qm-(dchl16-l 

E ' , = M q ) ( 2  (1 -q)(l - 4) (3.10) 

As in the first case, the degeneracy between E, and E-, has been dissolved, but that 
for the Zk symmetry in the case with 9 = e'n(l") has not. The energy eigenvalue has the 
same q + l  limit as (3.6) if A&*'SAi,. When we choose Ap)=Ah-)=A, we can 
observe a remarkable fact. For the Hamiltonian with the gauge interaction (3.9). the 
same energy eigenvalues (2.10) for the original Hamiltonian Hq are obtained if we 
make use of eigenfunctions 

@;(9) = ei(dcku@@m($). (3.11) 
These eigenfunctions satisfy the boundary conditions 

@;(9 + b) = ez"(dch~@;(9). (3.12) 
If we select the gauge potential A such that (elch)A = (lln) (n =2,3, . . .), we see that 
the system with the Hamiltonian (3.9) represents that for a particle obeying the Fermi 
statistics (n = 2) or other fractional statistics (n 23), of which the energy level is given 
by (2.10). 

4. Discussions of algebraic structure 

In this section we will investigate algebraic structures of this model. As we have 
mentioned in section 2, this model has a 2, symmetry when the deformation 
parameter q is taken to be q=exp(hi(llk)). We will show in the first subsection that 
the symmetry is related to the symmetry under the infinite-dimensional algebra, W,,,  
[ l l ]  without central extension. Furthermore, U&&) is found in subsection 4.2. 

4.1. wl+.. and W,,, 
We first investigate a classical theory of the model discussed in section 2. For the time 
being, we do not restrict q to be a root of unity. The classical theory is obtained by 
dropping h(q)  and replacing -iaq+EER, where 5 corresponding to momentum, and 
the angle variable 9, obey the following Poisson bracket 

{F,t}PLJ=1. ( 4 4  
Then the phase space A4 is a cylinder, M=S'XR, and physical observables are 
real-valued functions on M. The Hamiltonian in the classical theory can be written as 

The Hamiltonian H ;  is invariant under canonical transformations generated by 
j ;  % e m p p +  1 

{H: , j;& = 0. (4.3) 

K,j&=i(n(s+l)-m(r+ l))Lym. (4.4) 

The generators $,(neZ, r =  - L O ,  1,. . .) form the algebra wl+* as follows: 
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This is known as the algebra of area preserving diffeomorphism of a cylinder. 
Let us return to the quantum mechanics with the Hamiltonian H, given in (2.7). 

According to the quantizatios th" momentum 5 in j ;  must be replaced by -ia, and we 
define new generators as j;+ e'"q(-iaq)'+l, ~ E Z ,  r =  -1, 0, 1, . . . . Note that the 
generaton f ;  no longer obey the commutation relation (4.4) after the replacement 
i{ , } P B + [ ,  1. On the other hand, taking account of the relation q-iavei~=qei~q-ia~, the 
following commutation relation is obtained 

6061 

Thus, for arbitrary q, the Hamiltonian in the quantum mechanical case is not 
necessarily commutable with the generator j : .  A special case occurs when q is a root 
of unity, i.e. q=exp(M(l/k)), k = 2 , 3 ,  . . . . In this case the Hamiltonian H,, satisfies 
the following commutation relation: 

[H,, C l = O  (4.6) 

where we have used J ; = k - z k .  The commutation relations among J ;  are the Wit, 
without central extension 

It should be noticed here that the classical theory has the symmetry wi+* for arbitrary 
deformation parameter q=ea, or eh for all a ER,  while, in the quantum mechanical 
system, the parameter q must be quantized if we require the commutation relation 
(4.6). The Z, symmetry is understood that the eigenfunctions Qm(q) and Q,,,+&(q) are 
related by the generator J:  such that 

J:Qm(pl) = m'+%+&). (4.8) 

The Hilbert space of the model with q = exp(2dk) reduces to a finite-dimensional 
space after dividing the full space generated by all functions 0, by the symmetry. 

4.2. U&&) in this model 

In section 2 we have given the commutation relation between e" and p$-) only. In 
addition to p i - )  we have introduced another operator p g ) ,  but we did not discuss the 
commutation relation between pi - )  and p g )  there. To calculate the relation and also 
to derive an algebra among them are the aims of this subsection. 

In the following discussions it is convenient to define operators X, as 

dsf 1 
1-q-' 

(4.9) 
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The calculation of the commutation relation between X ,  and X -  is straightforward, 
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and we obtain 

where 

~'q"2(- '8vt lR)  

The commutation relations among K an 
KX, = q **X,K. 

Y* are easily ot 

(4.10) 

(4.11) 
ined as follows: 

(4.12) 

These relations (4.10) and (4.12) are nothing but the commutation relations of U&). 
We next investigate its highest weight representation. The actions of X ,  on the 

eigenfunctions are 

(4.13) 

where q-integers are taken as [X I ,=  (qm-q-j2)/(qm-q-'").  Noticing that X-@,,= 
0, we can expect that the highest weight module can be constructed on the state eo by 
acting on X ,  . We define weight vectors Ym(cp) as 

x+%(q) =q-""[m + l lq@m+dd 

= -q"("-"[m],@mm-l(q) 

(4.14) 

Let V be the highest weight U,-module defined as V={Ym(q)lrn E Zz0}. Taking into 
account that X-Yo(q)  = O  and KYo(q)=q1'4Y~(q), V is the highest weight module 
with the highest weight state Yo of dimension t. The actions of X ,  and K on V are 
given by 

(4.15) 

The highest weight module is irreducible unless q is a root of unity. 
We finally notice that ow model with the Hamiltonian (2.7) is not invariant under 

the actions of U&&), because the Hamiltonian can be written as H, = Klh(q)I2 X + X -  
which is not the Casimir operator of Uq(sZz). The quadratic Casimir invariant of U,(s12) 

is jwt  zero when we express the operators X+ , X- and K in terms of (4.9) and (4.11). 

5. Extension for many-angle variables 

Let us study the introduction of many-angle variables, pll, q2, . . . , qN 
(Vqi:OSqi<2rc). Here we investigate an extension realizing the symmetry among all 
these variables. We can derive the following expression for the momentum: 

p!-)=q-=i+Pq!-) ( r = l , 2 , .  . . , N) (5.1) 
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where ai= a, andp!-)are defined by the replacement of q and a,, respectively, with 
q, and I Y ~ ,  in&). The commutation relations are given as follows: 

le@,, 9(4] I = &h(q)q-%a, ' 

[??!-I, ??:-']=o. 
(5.2) = 0 

Note that the commutation relations are symmetric with respect to the indices. The 
Hamiltonian can be written as 

(5.3) 

where 9!+)=qSi'+#p!+). In the limit q+ 1, all the commutation relations (5.2) become 
classical numbers and the Hamiltonian reduces to 

. .  
We see that, by replacing the variables q, by the coordinates x, with periodic boundary 
conditions, this extension naturally reproduces the Hamiltonian for a free particle in 
N-dimensional space in the limit q + l .  

6. Some examples with potentials 

Let us study some examples of the present theory. 

6.1. Two-dimensionalproblems 

Let us study the q-deformed version of two-dimensional problems represented by the 
Hamiltonian which is written in terms of the cylindrical coordinates r and q as 

Since the eigenfunctions for a2/aq2 are the same as those of pF)p&-), we may replace 
aZ/aq2 by -pc'p&-)/h2 in H. Note that in the limit q+ 1 both Hamiltonians coincide 
with each other. The equation for the variable r is derived as 

R:(r)=EmRT(r), 

where V A T ,  q )  = K ' ( r ) % b )  and 

L= lh(q)121ml:lh2. (6.3) 
For the two-dimensional harmonic oscillator described by V ( r )  = Mw2r2/2 we imme- 
diately derive the energy eigenvalues 

Em=ho(n+ym+ I), (6.4) 
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where n E Z,,, and ym= fl,,,. Since ym is not generally an integer, excitation energies 
for the p motions are not represented by ho times integers. For the choice of 
q = exp(i2dk) the infinite degeneracies again appear. 

6.2. q-deformed Coulomb interaction 
We can introduce the q-deformed motion to the azimuthal angle part of the three- 
dimensional problems. Let us study a model with Coulomb potential (V(r)  = -Ze2/r 
and Z>O). By using the following coordinates (5, q and q) defined as 

T Kobayashi and T Suzuki 

x = gq cos p Y =E7 sin p? and z =  ( E 2 -  q 2 ) / 2  

the q-deformed Hamiltonian may be written down as 

Taking the eigenfunction as 

V"Or v >  pl)=f(s)g(rl)@m(q,) 

we can solve the equation Hqp = EV straightforwardly and obtain the energy eigenva- 
lues as 

where N m = N + y m +  1 for N E  Zz0. Except the special case where y,,, is an integer, the 
energy spectrum is different from the well known spectrum for Coulomb potentials. In 
particular the infinite degeneracy for every energy level again appears for q= 
exp(i /k) .  

7. Remarks 

We have studied some extensions and applications of quantum mechanics with the q- 
deformed commutator presented in [lo]. We have shown that when the deformation 
parameter is a root of unity, infinite degeneracy appears in each energy level, and then 
the number of energy levels is finite. The origin of the degeneracy is that the model 
has the symmetry of infinite dimension, W,,,, in the case q = e x p ( i / k ) ,  k=2, 3, 
. . . . We have, further, pointed out that the classical theory of this model has the 
symmetry, w , + ~ ,  for arbitrary q. The remarkable point is that the symmetry, w l + , ,  of 
the classical system is broken by means of the quantization but is recovered, only 
when q=exp(ih/k) ( k = 2 , 3 , .  . .) is chosen, as the symmetry W,,,. In other words, 
the parameter q is quantized according to the quantization of the model. We have 
seen that the infinite degeneracy for every energy level appears in all applications 
presented in this paper. It should be remarked that the degeneracy is dissolved for the 
general choice of the gauge function A, [lo]. As was noted for the discretized rings 
[lo], not only bosons but fermions can condense in every energy level as well because 
of the infinite degeneracy. At present the model we presented here is of theoretical 
interest only. Though we need more careful considerations and detailed investigations 
before we conclude whether such phenomena are observable in realistic processes, it 
will be interesting to look for such phenomena. 
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We remark that q-deformed interactions can be introduced perturbatively. Since 
the eigenfunctions are the same as those for the azimuthal angle, we can solve them 
easily. Taking into account that pb-) generates a finite displacement such as q+q + a 
for the choice q=e", we may also consider that the Hamiltonian (2.7) represents an 
equation for difference calculus. Extensions to difference equations such as equations 
for lattices are interesting, but we do not discuss them here. 
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